Most student responses will cluster around the following ways of thinking, which are listed in order of increasing mathematical sophistication. You will want to help students make connections among the various approaches used on the posters and and help everyone understand the usefulness of the higher levels.
Level 1: Adding and Skip-Counting.
Most 6th grade students will use additive ways of thinking to get answers to rate problems. Such methods work fine to make sense of the quantitative situation and get the answer, if the numbers are convenient enough to permit a reasonable number of calculations.
Level 2: Tables. Some students will be more organized and use tables. A table is a basic tool from 4th grade through college mathematics. You will want to encourage their use. If some students are not sure how to use tables, now is a good time to learn. Many students can read tables by 6th grade but do not know how to use them for making sense of situations.
Level 3: Multiplying. A good strategy, but watch out. Some students rush to calculating answers, and miss the chance to learn mathematics. In this problem, the important mathematics is in the relationship: how two quantities, distance and time, vary proportionally. Co-variation is a basic building block for understanding variables and functions.
Level 4: Equations. The equation d = rt expresses that distance equals (speed) times (time). Speed is a rate. In this case, 25 feet/second is the speed, so d = 25t. Some students who use the equation might use 50/2 as the rate, which is equivalent. All students should learn how to get this equation from 50/2 = 375/x or from 375/50 = x/2. All should also understand how the equation generates the values in the tables.
Level 5: Number Lines and Graphs. Thinking about distance traveled as a function of time traveled demonstrates an understanding of functions and variables. Call on students who think this way to help all students see how to think in terms of variables. Some students might use number lines, double number lines, or graphs to help them. Consider these questions about graphs and their connections to other strategies.
- Why is the graph a straight line?
- Why does it go through (0, 0)?
- Where can you find the pairs of values in the tables on the graph?
- Where is “50 feet in 2 seconds” on the graph?
- Where is the unit rate?
- Where is the equivalence of 25/1 = 50/2 = 100/4 = 375/15 ?
- How does the graph correspond to the equation d = rt?
This group of questions is worth a whole lesson. It develops many standards in grade 6 and builds the foundation for 7 and 8.
During discussion, also press for deeper understanding of unit rate.
Ask where the unit rate is in each way of thinking. Notice how unit rate is hidden in the skip counting because it isn't necessary for getting an answer. It shows up in the table in the 1, 25 row. The unit rate is the grade level mathematics students have to learn, so skip counters need to see and understand it in the tables and the equations. And the equation solvers need to see how it relates to tables and skip counting.