which is the line of slope m through the “anchor” point (x1, y1). For the fast phone, that point is (30, 0) and the slope is 3.5 (MB per second), giving us our equation, y = 3.5(x – 30).
We don’t see the point-slope form in math problems as often as slope-intercept, but in many ways it’s conceptually richer. After all, if our “anchor” point is (x1, y1), we could write it as
(the y-distance from the anchor point) = m (the x-distance from the anchor point)
which is practically a definition of slope.
We can look at the problem another way, using transformations. The faster phone uses the function D = 3.5T, but translated 30 seconds to the right. And how do we do that? Replace T with (T – 30).
All of that doesn’t hit these students until high-school mathematics—but having experience exploring problems like this one will be good background.
Plausibility and relevance
The problem with the two phones is at least more plausibly worth caring about than the local train leaving Chicago at noon, and the express leaving at 3 PM. But problems like these are important because they’re about the relationship between two linear functions.
Situations with constant rates involve linear functions, so any time you have two rates going on, you have a chance for one of these problems to arise. And it doesn’t have to be rates; sometimes problems arise wholly geometrically. If you’re writing software for some graphical phenomenon (where will the photon torpedo hit the space station?) you’ll end up creating and solving equations very similar to these, but with curves instead of lines.
Another question is about the delay. Why is the delay important?
First, students may be accustomed to situations that use direct proportion. The mePhone scenario is a way to take one of those (e.g., distance = rate times time) problems and alter it so that it’s still linear—there’s a constant slope—but it’s no longer direct. Its graph doesn't pass through the origin. This helps students develop skill with more complicated formulas, and also helps them recognize when a situation doesn’t fit the easy case, and starts giving them strategies to cope with it. Importantly, problems with delays give students a chance to break away from reflexively using a formula (d = rt) and really think about the mathematics: what’s changing? What do I know? How shall I represent each part of the problem? Does what I’ve written make sense so far? Where should I put t = 0?
What we’ve swept under the rug
Here’s a big issue: what do you do about the time during the delay? In On the Download, what about the formula for the mePhone 2 when the time T is less than 30 seconds? For example, at 20 seconds, if we plug into the formula, we get